SYNTHESIS OF (-)-TAYLORIONE, A SESQUITERPENE KETONE OF ENT-1,10-SECO-AROMADENDRANE SKELETON

Mitsuru NAKAYAMA, * Susumu OHIRA, Shuzo SHINKE, Yoichi MATSUSHITA, Akihiko MATSUO, and Shûichi HAYASHI

Department of Chemistry, Faculty of Science, Hiroshima University, Higashisenda-machi, Hiroshima 730

(-)-Taylorione, ent-1,10-seco-aromadendra-1(5),4(15)-dien-10-one, was synthesized from (+)- Δ^3 -carene via (-)-2-[3-(3-hydroxybutyl)-2,2-dimethylcyclopropyl]-2-cyclopenten-1-one as a key intermediate.

(-)-Taylorione, a novel sesquiterpene ketone, was isolated from the liverwort $Mylia\ taylorii$ (Hock.) Gray and characterized to be ent-1,10-seco-aromadendra-1(5), 4(15)-dien-10-one ($\underline{1}$) in our laboratory. We describe here the synthesis of this novel carbon skeletal sesquiterpene ketone via the cyclopentenone derivative ($\underline{2}$) as a key intermediate.

In order to prepare the ketone $\underline{1}$ having the same chirality as the natural product on the cyclopropane, we started the synthesis from methyl (-)-2,2-dimethyl-3-(2-oxopropyl)-1-cyclopropaneacetate ($\underline{3}$) obtainable readily by ozonization of (+)- Δ^3 -carene. Baeyer-Villiger oxidation of $\underline{3}$ with perbenzoic acid in chloroform (rt, 72h) gave an acetate ($\underline{4}$), which was hydrolyzed to an alcohol ($\underline{5}$) with potassium carbonate in methanol (0°C, 3h). The alcohol $\underline{5}$ was treated with pyridium chlorochromate (PCC), giving the corresponding aldehyde ($\underline{6}$). Reaction of $\underline{6}$ with acetylmethylenetriphenylphosphorane in chloroform (reflux, 36h) afforded an unsaturated ketone ($\underline{7}$), along with an alicyclic ketone ($\underline{8}$) (38% and 17% yield from $\underline{6}$, respectively, after repeated chromatography). The former $\underline{7}$ was hydrogenated on platinum oxide in ethanol to give a saturated ketone ($\underline{9}$). For protection of the carbonyl group, $\underline{9}$ was converted into a methoxymethyl ether ($\underline{10}$) on treatment with sodium borohydride and subsequent dimethoxymethane-diphosphorous pentaoxide via an alcohol ($\underline{11}$). Reduction of $\underline{10}$ with lithium aluminium hydride followed by oxidation with PCC

gave an aldehyde $(\underline{12})$, which was subjected to Grignard reaction with 3,3-ethylene-dioxy-1-propylmagnesium bromide (rt, 3h). After oxidation of the resulting alcohol with PCC, a keto-acetal $(\underline{13})$ was obtained (42% yield from $\underline{10})$. Both protecting groups in $\underline{13}$ were simultaneously removed with 5% hydrochloric acid -acetone (1:5) (reflux, 3h), and the resulting γ -keto-aldehyde was treated with aqueous sodium hydroxide - methanol solution to afford the desired key intermediate $\underline{2}$ (40% yield from $\underline{13}$).

Reaction of the cyclopentenone $\underline{2}$ with methylenetriphenylphosphorane in tetrahydrofuran (rt, 25h) gave a dien ($\underline{14}$) though in a low yield (13%). The oxidation of $\underline{14}$ was carried out in dimethylsulfoxide - benzene (1:1) in the presence of dicyclohexylcarbodiimide and pyridium trifluoroacetate (rt, 17h) to give $\underline{1}$, whose physical properties ($[\alpha]_D$ and UV, IR, NMR, and Mass spectra) were identical with those of the natural product.

References and Notes

- 1) A. Matsuo, S. Sato, M. Nakayama, and S. Hayashi, Tetrahedron Lett., 1974, 3681; idem, J. Chem. Soc., Perkin I, 1979, in press.
- 2) R. Sobti and S. Dev, Tetrahedron, 30, 2927 (1975).
- 3) $\underline{7}$: $\nu(\text{CCl}_4)$ 1745, 1695, 1670, 1610 cm⁻¹; $\delta(\text{CCl}_4)$ 1.13, 1.20, 2.12 (each 3H, s), 6.07 (1H, d, J=16 Hz), 6.46 (1H, dd, J=16, 8 Hz); $[\alpha]_D$ +86.4°. 8: $\nu(\text{CCl}_4)$ 1730, 1705, 1680, 1655, 1635 cm⁻¹; $\delta(\text{CCl}_4)$ 1.13 (6H, s), 2.14 (3H, s), 5.63, 5.93 (each 1H, d, J=16 Hz), 6.55 (1H, dt, J=16, 7 Hz), 6.80 (1H, d, J=16 Hz).
- 4)C. Büchi and H. Wüest, J. Org. Chem., 34, 1122 (1969).
- 5) $\underline{2}$: $\nu(\text{CCl}_4)$ 3650, 1710, 1630 cm⁻¹; $\delta(\text{CCl}_4)$ 0.96, 1.19 (each 3H, s), 1.13 (3H, d, J=7 Hz), 7.12 (1H, m); MS m/e 222 (M⁺); $[\alpha]_D$ -32.7°.
- 6) The physical properties of $\underline{14}$ were identical with those of the corresponding derivative from natural (-)-taylorione ($\underline{1}$).

(Received August 8, 1979)